Jornal de Ciências Biomédicas e Saúde
http://www.jcbs.periodikos.com.br/article/634ca61fa9539550461db5c3
Jornal de Ciências Biomédicas e Saúde
Revisão Narrativa Saúde

MARCADORES PARA O ESTUDO DA ANGIOGÊNESE EM TUMORES DE OVÁRIO: REVISÃO NARRATIVA DA LITERATURA

Isabela de Lima Félix, Mateus Harmad Char, Fernanda Oliveira Giacometo, Vitor Fernandes Sousa, Hebert Susumu Okano Júnior, Natália Venancio de Senne, Douglas Reis Abdalla

Downloads: 1
Views: 64

Resumo

Este trabalho procura rever o processo de angiogênese e crescimento tumoral, tendo grande ênfase nos marcadores tumorais relacionados ao câncer ginecológico. Para compreender a progressão tumoral, é importante entender a angiogênese e os marcadores envolvidos neste processo, tais como VEGF (Fator de Crescimento Endotelial Vascular), MMP (Matrix Metalloproteinase), CD105 (endoglin), TIMP (inibidores teciduais de metaloproteinases) e VASH (vasohibina), que são mais expressos em casos de câncer ginecológico avançado, quando comparados a pessoas saudáveis. Neste estudo, é apresentada uma descrição mais detalhada desses marcadores. É crucial compreender o processo de angiogênese, especialmente os biomarcadores, a fim de melhorar a gama de tratamento, trazendo melhores chances de sobrevivência às pessoas que lidam com o câncer.

Palavras-chave

Angiogênese; VEGF; Tumor de Ovário.

Referências

Abdalla DR et al. (2015). Angiogenesis Markers in Gynecological Tumors and Patents for Anti- Angiogenic Approach: Review. Recent Patents on Anti-Cancer Drug Discovery. 10. 298. 10.2174/1574892810999150827153642.

 

Al-Ostoot, Fares Hezam et al. Tumor angiogenesis: Current challenges and therapeutic opportunities. Cancer Treatment and Research Communications, [s. l.], 12 jun. 2022. Disponível em: https://www.sciencedirect.com/science/article/pii/S2468294221001209#cebibl1. Acesso em: 5 set. 2022.

 

Arjunan A, Thiriveni G.S.B, Mani R, Sudha B, Narmadha C, Malaichamy V. Expression of p53 and CD34 in Surface Epithelial Tumors of Ovary. IOSR Journal of Dental and Medical Sciences (IOSR-JDMS).Volume 18, Issue 1 Ver. 3 (2019).

 

Bamias, E. Gibbs, C.K. Lee, L. Davies, M. Dimopoulos, F. Zagouri, A.S. Veillard, J. Kosse, A. Santaballa, M.R. Mirza, G. Tabaro Bevacizumab com ou após quimioterapia para câncer de ovário recorrente resistente à platina: análises exploratórias do ensaio AURELIA Ann Oncol., 28 (8) (2017), pp. 1842-1848)

 

Bock AJ, Stavnes HT, Kærn J, Berner A, Staff AC, Davidson B. Endoglin (CD105) expression in ovarian serous carcinoma effusions is related to chemotherapy status. Tumor Biol 2011; 32(3): 589-96.

 

Brew K, Nagase H. The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim Biophys Acta. 2010 Jan;1803(1):55-71. doi: 10.1016/j.bbamcr.2010.01.003. Epub 2010 Jan 15. PMID: 20080133; PMCID: PMC2853873.

 

Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, Ramirez-Acuña JM, Perez-Romero BA, Guerrero-Rodriguez JF, Martinez-Avila N, Martinez-Fierro ML. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. Int J Mol Sci. 2020 Dec 20;21(24):9739. doi: 10.3390/ijms21249739. PMID: 33419373; PMCID: PMC7767220.

 

Cimpean AM, Mazuru V, Saptefrati L, Ceausu R, Raica M. Prox 1, VEGF-C and VEGFR3 expression during cervical neoplasia progression as evidence of an early lymphangiogenic switch. Histol Histopathol 2012; 27(12): 1543-50.

 

Dvorak HF, Brown LF, Detmar M, and Dvorak AM. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146: 1029–1039, 1995)

 

Escalona RM, Kannourakis G, Findlay JK, Ahmed N. Expression of TIMPs and MMPs in Ovarian Tumors, Ascites, Ascites-Derived Cells, and Cancer Cell Lines: Characteristic Modulatory Response Before and After Chemotherapy Treatment. Front Oncol. 2022 Jan 3;11:796588. doi: 10.3389/fonc.2021.796588. PMID: 35047406; PMCID: PMC8762252.

 

Ferrara, N. & Davis-Smyth, T. The biology of vascular endothelial growth factor. Endocr. Rev. 18, 4–25 (1997).

 

Figueira, Rita de Cássia Savio. Expressão de metaloproteinases de matriz (MMPS) e de seus inibidores (TIMPS e RECK) em modelo de progressão tumoral de Câncer de mama e sua correlação com dados clínicos-patológicos. Dissertação (Mestrado em Bioquímica) - Instituto de Química, Universidade de São Paulo, São Paulo, 2006. Disponível em: . doi:10.11606/ D.46.2016.tde-31052016-184027. Acesso em: 11 jul. 2022.

 

Figueira RC, Gomes LR, Neto JS, Silva FC, Silva ID, Sogayar MC. Correlation between MMPs and their inhibitors in breast cancer tumor tissue specimens and in cell lines with different metastatic potential. BMC Cancer. 2009 Jan 14;9:20. doi: 10.1186/1471-2407-9-20. PMID: 19144199; PMCID: PMC2631003.

 

Foekens J, Sieuwerts A, Smid M, Look M, de Weerd V, Boersma A, Klijn J, Wiemer E and Martens J: Four miRNAs associated with aggressiveness of lymph node-negative, estrogen receptor-positive human breast cancer. Proc Natl Acad Sci USA. 105:13021–13026. 2008. View Article : Google Scholar : PubMed/NCBI

 

Graça B, Lunet C, Coelho AS, Monteiro G, Freire P, Speidel A, Carvalho L. Angiogênese e cancro, da fisiopatologia à terapêutica. Acta Med Port, v.17, p.76-93, 2004.

 

Jiang, Xianjie et al. The role of microenvironment in tumor angiogenesis. The role of microenvironment in tumor angiogenesis, [s. l.], 30 set. 2020. Disponível em: https://jeccr.biomedcentral.com/articles/10.1186/s13046-020-01709-5. Acesso em: 11 jul. 2022.

 

Jobim, Flavio Cabreira et al. Expressão da MMP-9 e do VEGF no câncer de mama: correlação com outros indicadores de prognóstico. Revista Brasileira de Ginecologia e Obstetrícia [online]. 2008, v. 30, n. 6, pp. 287-293. Disponível em: . Epub 04 Set 2008. ISSN 1806-9339. https://doi.org/10.1590/ S0100-72032008000600004. Acesso em: 11 jul. 2022. https://www.scielo.br/j/rbgo/a/ 8MZ9NhkMpQP8VjXm6Sy5W3z/?lang=pt

 

Kamel H, Abdelazim I, Habib SM, El Shourbagy MAA, Ahmed NS. Immunoexpression of matrix metalloproteinase-2 (MMP-2) in malignant ovarian epithelial tumours. J Obstet Gynaecol Can 2010; 32(6): 580-6.

 

Kubo, H.; Fujiwara, T.; Jussila, L.; Hashi, H.; Ogawa, M.; Shimizu, K.; Awane, M.; Sakai, Y.; Takabayashi, A.; Alitalo, K.; et al. Involvement of vascular endothelial growth factor receptor-3 in maintenance of integrity of endothelial cell lining during tumor angiogenesis. Blood 2000, 96, 546–553. [CrossRef] [PubMed]

 

Lawicki S, Będkowska GE, Gacuta-Szumarska E, Szmitkowski M. The plasma concentration of VEGF, HE4 and CA125 as a new biomarkers panel in different stages and sub-types of epithelial ovarian tumors. J Ovarian Res. 2013; 6(1): 45.

 

Lee, B.Y. Ryoo, C.H. Hsu, K. Numata, S. Stein, W. Verret, S.P. Hack, J. Spahn, B. Liu, H. Abdullah, Y. Wang Atezolizumabe com ou sem bevacizumab em carcinoma hepatocelular irrealizável (GO30140): um estudo de marca aberta, multicentro, fase 1b Lancet Oncol., 21 (6) (2020), pp. 808-820

 

Lizarraga F, Espinosa M, Ceballos-Cancino G, Vazquez-Santillan K, Bahena-Ocampo I, Schwarz-Cruz Y Celis A, Vega-Gordillo M, Garcia Lopez P, Maldonado V, Melendez-Zajgla J. Tissue inhibitor of metalloproteinases-4 (TIMP-4) regulates stemness in cervical cancer cells. Mol Carcinog. 2016 Dec;55(12):1952-1961. doi: 10.1002/mc.22442. Epub 2015 Nov 30. PMID: 26618609.

 

Lugano, Roberta et al. Tumor angiogenesis: causes, consequences, challenges and opportunities. Tumor angiogenesis: causes, consequences, challenges and opportunities, [s. l.], 6 nov. 2019. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7190605/. Acesso em: 11 jul. 2022.

 

Meng N., Li Y., Zhang H. and Sun X-F. RECK, a novel matrix metalloproteinase regulator. Histol Histopathol 2008; 23: 1003-1010.

Podhajcer O.L., Benedetti L., Girotti M.R., Prada F., Salvatierra E., Llera A.S. The role of the matricellular protein SPARC in the dynamic interaction between the tumor and the host. Cancer Metastasis Rev 2008; 27:523–537.

 

Navarro, V.P., Nelson FIlho, P., Silva, L.A.B, Freitas, A.C. A participação das metaloproteinases da matriz nos processos fisiopatológicos da cavidade bucal. Rev. odontol. UNESP, vol.35, n4, p.233-238, 2006. Disponível em: . Acesso em: 11 jul. 2022.

 

Nobrega, Nathali Guimarães. Avaliação da expressão gênica de MMPs e TIMPs modulados por RECK e SPARC durante o desenvolvimento ovariano e a foliculogênese em ratas. Monografia (Bacharelado em Ciências Biológicas) - Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo e Universidade Estadual Paulista, São Paulo, 2010. Disponível em: . Acesso em: 11 Jul. 2022. 

 

Olivares-Urbano MA, Griñán-Lisón C, Zurita M, Del Moral R, Ríos-Arrabal S, Artacho-Cordón F, Arrebola JP, González AR, León J, Antonio Marchal J, Núñez MI. Matrix metalloproteases and TIMPs as prognostic biomarkers in breast cancer patients treated with radiotherapy: A pilot study. J Cell Mol Med. 2020 Jan;24(1):139-148. doi: 10.1111/jcmm.14671. Epub 2019 Sep 30. PMID: 31568637; PMCID: PMC6933337.

 

Orre M, Rogers PA. VEGF, VEGFR-1, VEGFR-2, densidade de microvessel e proliferação de células endoteliais em tumores do ovário. Câncer Int J. 1999; 84(2):101-108. doi: 10.1002/(SICI)1097-0215(19990420)84:2<101::AID-IJC2>3.0.CO;2-5. [PubMed] [CrossRef] [Google Scholar]

 

Peres, Gustavo Filipov. Investigação da evolução dos pólipos endometriais em câncer de endométrio. Dissertação (título de mestre em Ginecologia, Obstetrícia e Matologia), Campus de Botucatu, Faculdade de Medicina, Universidade Estadual Paulista, Botucatu, 2015. Disponível em: < https://docplayer.com.br/35917295-Investigacao-da-evolucao-dos-polipos-endometriais-em-cancer-de-endometrio.html>. Acesso em: 11 jul. 2022.

 

Porter, P.L., Sage, E.H., Lane T.F., Funk, S.H., and Gowan, A.M. Distribution of SPARC in normal and neoplastic tissue. J. Histochem. Cytochem 1995; 43:791 – 800.

 

Pusztaszeri MP, Seelentag W, Bosman FT. Immunohistochemical Expression of Endothelial Markers CD31, CD34, von Willebrand Factor, and Fli-1 in Normal Human Tissues. Journal of Histochemistry & Cytochemistry. 2006;54(4):385-395. doi:10.1369/jhc.4A6514.2005

 

Ramjiawan, A.W. Griffioen, D.G. Duda Anti-angiogênese para câncer revisitada: há um papel para combinações com a imunoterapia? Angiogênese, 20 (2) (2017), pp. 185-204)

 

Rosen LS, Hurwitz HI, Wong MK, Goldman J, Mendelson DS, Figg WD, et al. A phase I first-in-human study of TRC105 (Anti-Endoglin Antibody) in patients with advanced cancer. Clin Cancer Res 2012; 18(17): 4820-9.

 

Roy H, Bhardwaj S, Yla-Herttuala S. Biology of vascular endothelial growth factors. FEBS Lett, v.580, p.2879-2887, 2006.

 

Salinas‑Vera YM, Marchat LA, Gallardo‑Rincón D, Ruiz‑García E, Astudillo-De La Vega H, Echavarría‑Zepeda R and López‑Camarillo C: AngiomiRs: MicroRNAs driving angiogenesis in cancer (Review). Int J Mol Med 43: 657-670, 2019

 

Shankavaram U.T., Dewitt D.L., Funk S.E., Sage E.H., and Wahl L.M. Regulation of Human Monocyte Matrix Metalloproteinases by SPARC. Journal Of Cellular Physiology 1997; 173:327 – 334.

 

Schmalfeldt B, Prechtel D, Härting K, Späthe K, Rutke S, Konik E, et al. Increased expression of matrix metalloproteinases (MMP)-2, MMP-9, and the urokinase-type plasminogen activator is associated with progression from benign to advanced ovarian cancer. Clinical Canc Res 2001; 7(8): 2396-404.

 

Sehgal S, Goyal P, Agarwal R, Singh S, Kumar A, Gupta R, Kumar V, Agrawal D. Differences in the angiogenesis of benign and malignant ovarian surface epithelial tumors demonstrated by microvessel density and immunohistochemistry. Journal of Interdisciplinary Histopathology, 2013.

 

Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science, v.219, n.4587, p.983-985, 1983

 

Su Y, Gao L, Teng L, Wang Y, Cui J, Peng S, et al. Id1 enhances human ovarian cancer endothelial progenitor cell angiogenesis via PI3K/Akt and NF-κB/MMP-2 signaling pathways. J Translat Med 2013; 11: 132-9.

 

Takahashi Y, Saga Y, Koyanagi T, Takei Y, Machida S, Taneichi A, Mizukami H, Sato Y, Matsubara S, Fujiwara H. Vasohibin-1 expression inhibits advancement of ovarian cancer producing various angiogenic factors. Cancer Sci. 2016 May;107(5):629-37. doi: 10.1111/cas.12911. Epub 2016 Mar 30. PMID: 26893100; PMCID: PMC4970829.

 

Takahashi Y, Koyanagi T, Suzuki Y, Saga Y, Kanomata N, Moriya T, Suzuki M, Sato Y. Vasohibin-2 expressed in human serous ovarian adenocarcinoma accelerates tumor growth by promoting angiogenesis. Mol Cancer Res. 2012 Sep;10(9):1135-46. doi: 10.1158/1541-7786.MCR-12-0098-T. Epub 2012 Jul 23. PMID: 22826464.

 

Tamaki K, Moriya T, Sato Y, Ishida T, Maruo Y, Yoshinaga K, Ohuchi N, Sasano H. Vasohibin-1 in human breast carcinoma: a potential negative feedback regulator of angiogenesis. Cancer Sci. 2009 Jan;100(1):88-94. doi: 10.1111/j.1349-7006.2008.01015.x. Epub 2008 Nov 24. PMID: 19037993.

 

Tsoi M, Laguë MN, Boyer A, Paquet M, Nadeau ME, Boerboom D. Anti-VEGFA therapy reduces tumor growth and extends survival in a murine model of ovarian granulosa. Cell Tumor Translat Oncol 2013; 6(3): 226-33.

 

Veikkola T, Karkkainen M, Cleasson-Welsh L, Alitalo K. Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res, v.60, p.203-212, 2000.

 

Vos, M.C., van der Wurff, A.A.M., van Kuppevelt, T.H. et al. The role of MMP-14 in ovarian cancer: a systematic review. J Ovarian Res 14, 101 (2021). https://doi.org/10.1186/ s13048-021-00852-7. Acesso em: 11 jul. 2022. https://ovarianresearch.biomedcentral.com/ articles/10.1186/s13048-021-00852-7

 

Wang W, Ren F, Wu Q, Jiang D, Li H and Shi H: MicroRNA-497 suppresses angiogenesis by targeting vascular endothelial growth factor a through the PI3K/AKT and MAPK/ERK pathways in ovarian cancer. Oncol Rep. 32:2127–2133. 2014. View Article : Google Scholar : PubMed/NCBI

 

Wang J, Yu C, Jiang X, Wu X, Jia Y, Zhang H, Li Z. [Vasohibin-2 promotes proliferation and metastasis of cervical cancer cells by regulating epithelial-mesenchymal transition]. Nan Fang Yi Ke Da Xue Xue Bao. 2022 Jul 20;42(7):966-975. Chinese. doi: 10.12122/j.issn.1673-4254.2022.07.02. PMID: 35869758; PMCID: PMC9308866.

 

Yamamoto M, Ozawa S, Ninomiya Y, Koyanagi K, Oguma J, Kazuno A, Hara H, Yatabe K, Kajiwara H, Nakamura N, Sato Y. Plasma vasohibin-1 and vasohibin-2 are useful biomarkers in patients with esophageal squamous cell carcinoma. Esophagus. 2020 Jul;17(3):289-297. doi: 10.1007/s10388-020-00719-8. Epub 2020 Jan 24. PMID: 31980976.

 

Zhang Y, Chen Q. Relationship between matrix metalloproteinases and the occurrence and development of ovarian cancer. Braz J Med Biol Res. 2017 May 18;50(6):e6104. doi: 10.1590/1414-431X20176104. PMID: 28538838; PMCID: PMC5479390.

 

Zhang B, Wu Z, Xie W, Tian D, Chen F, Qin C, Du Z, Tang G, Gao Q, Qiu X, Wu C, Tian J, Hu H. The expression of vasohibin-1 and its prognostic significance in bladder cancer. Exp Ther Med. 2017 Oct;14(4):3477-3484. doi: 10.3892/etm.2017.4969. Epub 2017 Aug 18. PMID: 29042936; PMCID: PMC5639433.

 

Ziebarth AJ, Nowsheen S, Steg AD, Shah MM, Katre AA, Dobbin ZC, et al. Endoglin (CD105) contributes to platinum resistance and is a target for tumor-specific therapy in epithelial ovarian cancer. Clin Cancer Res 2013; 19(1): 170-82.

634ca61fa9539550461db5c3 jcbs Articles
Links & Downloads

JCBS

Share this page
Page Sections